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The paper describes a method of constructing the temperature-distribution 
function for an infinite solid cylinder on whose external surface there 
exists a temperature distribution T = f(z) extending over half of its 
length, the other half transferring heat to the surroundings in accord- 
ance with Newton’s law of cooling. 

The solution of the preceding problem reduces itself to the determi- 
nation of the function T(r, z) which satisfies the Laplace equation in 
cylindrical coordinates 

(1) 

with the boundary conditions 

‘g+lzT=O for r=R, O<Z<+UJ (2) 

T=/(z) for r=R, --oo<z<O (3) 

We shall assume that in the interval (- m, 0) the function f(z) can 
be represented by a Fourier integral, that is by 

f (4 = \ A 0) 03s WPl 
.I 

--co 

0 

A (p) = 2 \ f  (v) cos Pvdv (4) 
. 

-co 

Provisionally, we shall establish that solution of Equation (1) which 
satisfies the following boundary conditions: 

ag+hT=O for r=R, O<Z<+CQ 

T = A cos pz = +. A (eipz + epipz) for r = R, --oo<z<o 

(5) 

(‘3) 
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Here, the symbols A and @ denote material parameters. 

Following [ I,2 I ) we shall introduce the auxiliary solution of Equa- 
tion (1) in the form 

TO (r, z) = BJ0 (mr) em2 

where m denotes a complex parameter. 

Treating B as a function of the parameter u = nR, we construct the 
integral 

1 T, = - 
R s 

B (u) JO (pu) e Au l-h (7) 
C 

for which the contour of integration C is taken along the imaginary axis 
with circles around the points f iPR. where z = hR and r = pR. 

The integral (7) satisfies Equation (1) if it can be shown that it, 
together with its derivatives with respect to p and x up to and including 
second order, converges absolutely and uniformly in the interval 

The solution (7) assumes the following values on the boundary: 

%+hT,=+ 
s 

K(u)eh”du for p=l, lhl<m 

C 

I 
T1=- $(u)e 

R s 
hu d24 for p = 1, I h I < 00 

C 

(8) 

(9) 

Here 
RK (u) 

’ (u) = hRJo (u) - UJI (u) ’ 
RJo (u) K (u) 

’ (‘) = hRJo (u) - uJ1 (u) 

The function K(u) is so determined as to turn the conditions (8) and 
(9) into (2) and (3). respectively, namely 

s 
K (~1 e ‘*du = 0 for p = i, l,>O (10) 

C 

s 
1c, (u) e Audu = +A (eiPRh + ewiPRL) for p = 1, h <0 (11) 

C 

The boundary condition (10) will be satisfied if K(u) can be shown to 
be regular in the domain Re(u) < 0 and to satisfy the conditions of 
Jordan’s lemma in that domain. 

In order to satisfy the boundary conditions (11). it is necessary to 
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show that the function I,&u> is regular in the domain Re(u) > 0, that it 
satisfies the conditions of Jordan’s lemma in that domain, as well as 
the condition 

res $ (u)ehulU=ipRf res $ (u)eAulU=-ipR= - & (,iPRh + ,--i$R).) 

Consequently 

res h’ (u)ehU[,+,R+res K (~)e~ul~=-~~~ = - A lhzo (PR) + PI1 (pR)l 
4ni1, (PR) 

(,i$Rh + ,--ifiRk) 

It was shown in [ 1.2 1 that in order to construct the function K(u) 

it is possible to consider the infinite product 

co l--u/a,< n (u) = n &-u, b, 
Here a1 and bc denote the positive roots of the equations 

hRJ0 (u) - UJl (u) = 0, Jo (u) = 0 (12) 

Correspondingly, according to [ 2 16 we have 

n (u) zz I/--u (13) 

for sufficiently large values of 1 u 1 in the interval 0 < 6 < arg u ,( 
27 - 6. 

First, it is not difficult to establish that 

K @) = _ ‘411 (u) ifJo W) + PI1 CPfo1 1 
4ni1, (j3R) (u - QR) II (iPR) ’ (u f ifiR’) !I (- i?R) 1 

satisfies the conditions enumerated previously, and that the function 

T1 = JO (PU) K (u) e hu du = ,4cp (p, h, 3) (14) 
hRJ,, (u) - uJ1 (u) 

Here, the function 

) 1 sin hz dz + !f@& cos hflR 

is a solution of Equation (1) and satisfies the boundary conditions (5) 
and (6). 

Regarding A as a function of the parameter p, we construct the 



integral 
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0 

T (ps h) = A (P) cp (~8 L 8) d? 
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(15) 

where A(@) is determined by Equation (4). 

The function (15) satisfies Equation (1) and the boundary conditions 
(2) and (3). 
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