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The paper describes a method of constructing the temperature-distribution
function for an infinite solid cylinder on whose external surface there
exists a temperature distribution T = f(z) extending over half of its
length, the other half transferring heat to the surroundings in accord-

ance with Newton’s law of cooling.

The solution of the preceding problem reduces itself to the determi-
nation of the function T(r, z) which satisfies the Laplace equation in

cylindrical coordinates
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with the boundary conditions
aT
5’_—+hT=0 for r=R, 0 <z + o
T=17f(z2) for r=R, —o02L0

We shall assume that in the interval (— o, 0) the function f(z)
be represented by a Fourier integral, that is by

f(z) = f (v) cos Budy
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A (B) cosBadB, A (B) =2
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Provisionally, we shall establish that solution of Equation (1)
satisfies the following boundary conditions:

%Tr-—i—lzT:O for r=R, 0z + o0

T=AcosBz=%A(eiBz+e‘iﬂz) for r=R, — o0 < z2<0
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Here, the symbols A and 3 denote material parameters.

Following [ 1,2 ], we shall introduce the auxiliary solution of Equa-
tion (1) in the form

To (r, 2) = BJo (mr) e™

where = denotes a complex parameter.

Treating B as a function of the parameter u = mR, we construct the
integral

T = %g B (w) Jo (pu) €M du )
loj
for which the contour of integration C i1s taken along the imaginary axis
with circles around the points t i3 R, where z=AR and r = pR.

The integral (7) satisfies Equation (1) i1f it can be shown that it,
together with its derivatives with respect to p and A up to and including
second order, converges absolutely and uniformly in the interval

P<1 2] <eo

The solution (7) assumes the following values on the boundary:

‘967;1+hn=%gk'(u)e“du for p=1, | A| < oo (8)
C
le%glp(u)e)‘“du for p=1, |A|< o0 9)
C
Here
Bu) = RK (u) () RJo(w) K (w)

RRTo (u) —udy () ' T RET, (w) — ud1 (8)

The function K(u) is so determined as to turn the conditions (8) and
(9) into (2) and (3), respectively, namely

SK(u)e)‘udu=0 forp=1,A>0 (10)
C
Sxp () e du —= %A (ePBY L 18Ry pin o — 1, A0 (11)

C

The boundary condition (10) will be satisfied if K(u) can be shown to
be regular in the domain Re(u) < 0 and to satisfy the conditions of
Jordan’s lemma in that domain.

In order to satisfy the boundary conditions (11), it is necessary to
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show that the function t)(u) is regular in the domain Re(u) > 0, that it
satisfies the conditions of Jordan’s lemma in that domain, as well as
the condition

res P (u)eM, _;pp+ res ¥ (w)eru|, __iqp=— 4 (e'BRA 4 o—ifR2

4mi
Consequently
resK (u)e)\‘u[u=iﬂR+res K (u)glulu____iBR _ A4 lhlo ([‘BJ:L?} —'(_B%I)I (BR)] (eiBR)\ + e—iBR).)
0

It was shown in [ 1,2 ] that in order to construct the function K(u)
it is possible to consider the infinite product

e 1—uja,
n(u)zﬂﬁf

k=11—u, bk
Here a) and bk denote the positive roots of the equations
hRJo (u) — wJy () = 0, Jo(u) =0 (12)
Correspondingly, according to[ 21, we have

(= V—u/kR (13)

for sufficiently large values of |u| in the interval 0< & <argu ¢
o - 8.

First, it is not difficult to establish that

__ All (u) [rdo (BR) 4 BI, (RR)] 1 i+
K = 4:31'10(;312) : [(u—iBR) TR | (@ T BRI (_i;sR)]

satisfies the conditions enumerated previously, and that the function

=\ Lo K @ gy =19, 1 8) (14)
& hRJo(u)—uJ1 (u)

Here, the function

ol B =g § [1})0(22)) Im{ T (i ) [“z‘”_fg) + (fgl)?] em} B

—00
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1s a solution of Equation (1) and satisfies the boundary conditions (5)
and (6).

Regarding A as a function of the parameter 3, we construct the



integral
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0
T (p, M) = g AB) e, M B)d3 (1)

—00

where A(3) is determined by Equation (4).

The function (15) satisfies Equation (1) and the boundary conditions

(2) and (3).
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